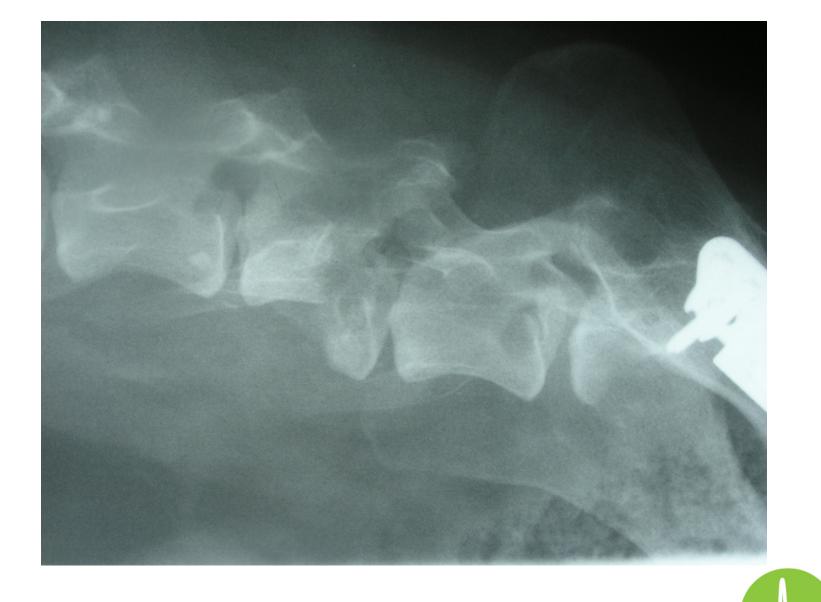

Trauma

Triage, stabilization and management of the trauma patient


J. Michael Walters, DVM, MS, DACVECC Co-Medical Director VCA West Coast Specialty and Emergency Animal Hospital

VCA Specialty Animal Hospitals

OVERVIEW

- o Triage
- Pathophysiology of shock
- ABC's and initial management techniques
- $\circ~$ Goal directed therapy
- Fluid resuscitation
- Respiratory distress
- Tips for Success

• Triage

: the sorting of and allocation of treatment to patients and especially battle and disaster victims according to a system of priorities designed to maximize the number of survivors

: the sorting of patients (as in an emergency room) according to the urgency of their need for care

: the sorting of problems within a patient in order of urgency

TRAUMA OBJECTIVES

- ID and correct life-threatening injuries
- Resuscitate and stabilize blood flow to maximize tissue perfusion/DO₂
- Determine degree and severity of other injuries (secondary survey)
- Prioritize injuries
- Definitive care for injuries
- Supportive care

ATLS - HUMAN

- Systematic approach necessary to rapidly identify injuries and stabilize the patient
- $\,\circ\,$ This approach is divided into:
 - \circ 1. Primary Survey
 - o 2. Resuscitative Phase
 - o 3. Secondary Survey
 - o 4. Definitive Care Phase

PRIMARY SURVEY - ABCDE

- Airway and arterial bleeding
 - Patent airway?
 - Apply direct pressure to active hemorrhage
- o **Breathing**
 - Observe respiratory pattern/stance
 - Thoracic auscultation
 - o Thoracocentesis
 - Crash ETT PPV, manual vent
 - Emergency tracheostomy
 - o Apnea

PRIMARY SURVEY

- \circ Circulation
 - \circ MM color
 - CRT
 - Pulse deficits
 - Arrhythmias
 - \circ Tachycardia
 - \circ Bradycardia
 - $\,\circ\,$ Hydration status

PRIMARY SURVEY

- **D**isability
 - \circ LOC
 - o Deep pain? Motor?
- External assessment
 - Quickly examine all areas
 - Hemorrhage, lacerations, punctures, abrasions, etc.

SECONDARY SURVEY A CRASH PLAN

- Airway neck, chest, feel, listen; sounds?
- Cardiovascular mm, CRT, pulse rate, rhythm, heart tones, BP
- **R**espiratory effort, rate, pattern
- Abdominal bowel sounds, pain, evaluate skin -bruising, punctures, lacerations
- Spine dorsal spine alignment, pain, evidence of trauma, walking?, deep and superficial pain, anal tone, reflexes
- Head LOC, pain, anxiety, pupil size, PLR's, cranial nerves, EENT, jaws, teeth

SECONDARY SURVEY

- Pelvis palpation, rectal exam, inguinal, femoral
- Legs assess limbs, tail pain, swelling, punctures, lacerations, deformity, movement
- Arteries brachial, femoral, dorsal pedal, cranial tibial – pulse quality, presence
- Nerves peripheral nerves, pain, muscle tone

SECONDARY SURVEY

- Assume occult injury in the trauma patient
- Trauma films in poly-trauma patients
- FAST, TFAST
- Rule out injuries rather than assume they are absent

AIRWAY, BREATHING, PAIN, ANXIETY

- \circ O₂ by mask or flow by
- Sedation/analgesia
- Rapid induction for severe respiratory distress
 - Opioid + BZD + propofol
 - Propofol + BZD
- o "slash" tracheostomy
 - \circ Local anesthesia only

EXTERNAL HEMORRHAGE

- Direct pressure above and below
- Elevate
- Compressive dressing
- Pressure points digital pressure
- Increase pressure pressure cuff, more dressing
- Tourniquet salvage
- Hemostatic agent
- Surgery

SHOCK - DEFINED

 Kumar and Parrillo (1995) - "The state in which profound and widespread reduction of *effective* tissue perfusion leads first to reversible, and then if prolonged, to irreversible cellular injury."

SHOCK: CLASSIFICATION

- Hypovolemic shock due to decreased circulating blood volume in relation to the total vascular capacity and characterized by a reduction of diastolic filling pressures
- Cardiogenic shock due to cardiac pump failure related to loss of myocardial contractility/functional myocardium or structural/mechanical failure of the cardiac anatomy and characterized by elevations of diastolic filling pressures and volumes
- Extra-cardiac obstructive shock due to obstruction to flow in the cardiovascular circuit and characterized by either impairment of diastolic filling or excessive afterload
- Distributive shock caused by loss of vasomotor control resulting in arteriolar/venular dilatation and characterized (after fluid resuscitation) by increased cardiac output and decreased SVR

PATHOPHYSIOLOGY OF SHOCK

 \circ Poor perfusion

Low or maldistribution of blood flow

\odot Imbalance DO₂ and VO₂

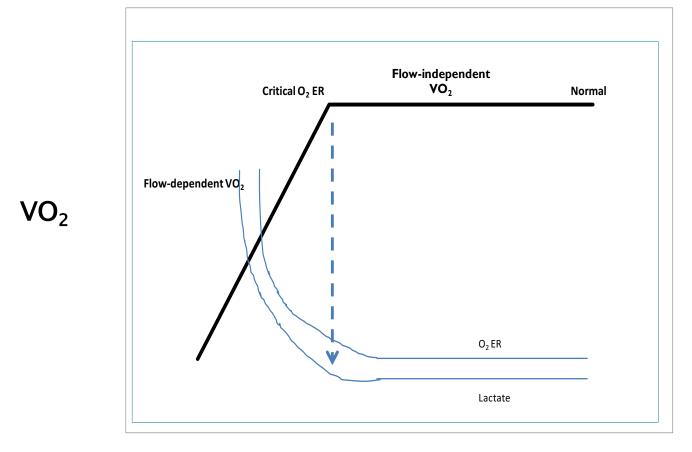
RESUSCITATION: OPTIMAL END-POINT RESUSCITATION

- Traditional endpoints
 - Mentation
 - o CRT
 - HR
 - o BP
 - Rectal temp
 - Urine output
- Unreliable in many cases

OPTIMAL END-POINT RESUSCITATION

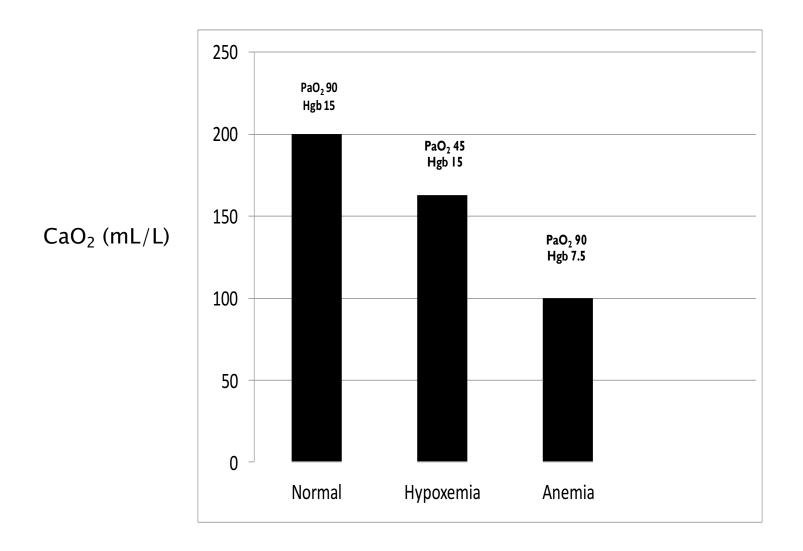
Compensated shock

- o 85% human trauma patients
 - Ongoing perfusion deficits
 - o Tissue hypoxemia
 - Occult O₂ debt
- Need for more sensitive markers
 - Lactate
 - Base deficit
 - \circ S_v O₂, S_{cv} O₂
 - Gastric tonometry


DO₂ AND VO₂ RELATIONSHIP

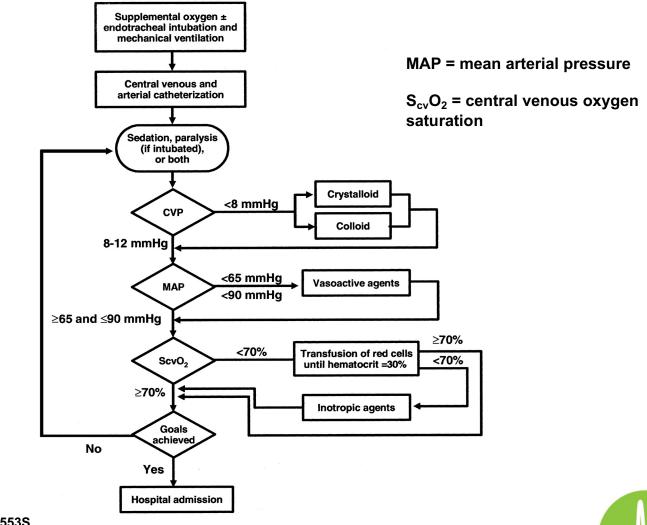
- Healthy patient
 - CO adjusted
 - \circ DO₂ > VO₂
- \circ In critically ill
 - Decreased CO
 - DO2 \neq VO₂ increase in O₂ ER
 - $\circ \quad \text{Minimizes O}_2 \text{ debt}$
- Intervention may correct deficit
- Persistent hypoperfusion
 - o **Dysoxia**
 - Anaerobic metabolism

$VO_2 = DO_2 X O_2 ER$



HEMODYNAMICS AND O₂ TRANSPORT

- \circ O₂ Transport affected by
 - **CO**
 - o Hgb
 - \circ SaO₂
- \circ PaO₂
 - o Lesser extent
- o CaO₂ = Hgb (1.34) (SaO₂)


EARLY GOAL-DIRECTED THERAPY

- Specific end-points controversial
- DO₂, VO₂ measurements
 - o Cumbersome
 - \circ Requires PAC or other means to measure O₂ and/or CO
 - Inconsistent findings
- Early goal-directed therapy
 - Positive affect on human sepsis/shock patient outcome
 - o Global markers of perfusion

Protocol for early goal-directed therapy for patients in shock.

Levy M. M. Chest 2005;128:547S-553S

©2005 by American College of Chest Physicians

END-POINTS OF RESUSCITATION – SMALL ANIMAL PATIENTS

- o Lactate
 - Evaluated most extensively
- Lagutchik, et.al.
 - Healthy and injured patients
 - Median venous lactate in healthy dogs
 - o 1.38 mmol/L
 - Median lactate in injured dogs
 - o 2.48 mmol/L
 - 3.48 mmol/L in dogs that died
 - Lactate value correlated with survival

JVECCS VOL. 8, NO.2 AUGUST, 1998

VCA Specialty Animal Hospitals

LACTATE - GDV

- Papp et al.
 - \circ GDV
 - Elevated lactate > 6 mmol/L during resuscitation
 predictive of gastric necrosis
 - Lactate < 6 mmol/l 99% survival rate
 - o Lactate > 6 mmol/L 58% survival

J Am Vet Med Assoc 1999; 215(1):49–52.

LACTATE - GDV

- o Green, et. al
- Failed to show correlation between lactate > 6 and macroscopic gastric necrosis
- > 50% decrease lactate over 12 hours
 0 70% survival

J Vet Emerg Crit Care 2011; 21(1): 36-44)

LACTATE - GDV

JAVMA, Vol. 236, No. 8, April 15, 2010

- Zacher, et. al
- Initial lactate > 9.0 mmol/L 54% survival
- Initial lactate < 9.0 mmol/L 90% survival
- HIL group post resuscitation
 - Lactate >6.4 23% survival (< 6.4, 91%)
 - Lactate absolute change $\leq 4 10\%$ (>4, 86%)
 - Lactate % Δ < 42.5 % 15% (>42.5%, 100%)
- Take home
 - Serial measurements throughout the resuscitation process

Treatment of Shock

- Venous access essential
- o MDB
 - o PCV
 - o TP
 - Blood glucose
 - Electrolytes/iCa and VBG
 - o Lactate

- PCV/TP normal in early trauma case
- \circ With fluid equilibration

○ Both decrease

Blood glucose

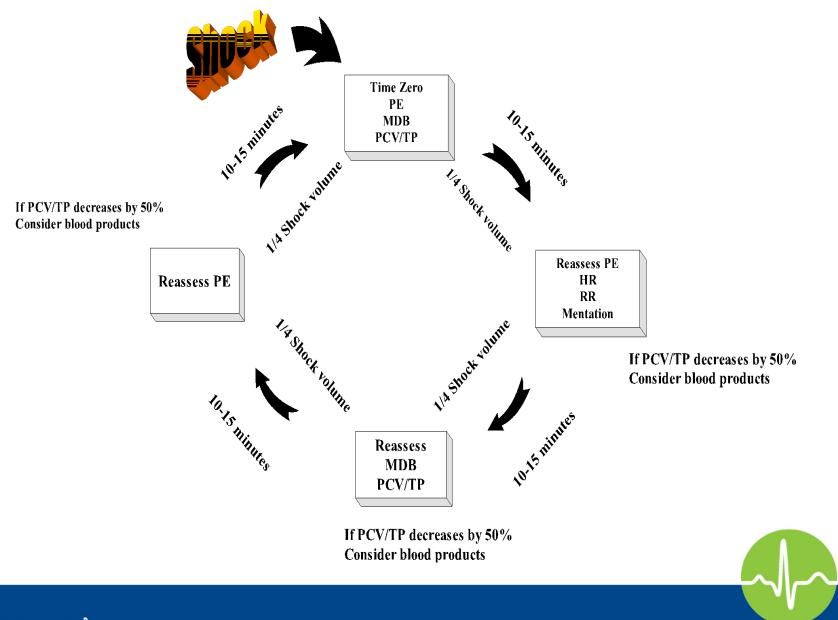
Normal in most patients

Hypoglycemia in moribund, hypoperfused

Fluid choices

- Isotonic crystalloids
 - o 0.9% NaCl
 - o Normosol R
 - o Plasmalyte
 - Lactated Ringer's
- Replace intravascular volume
- Improve tissue perfusion
- Balanced fluid ideal

Shock fluid volumes


60-90 mL/kg – dogs
 40-60 mL/kg – cats

o "¼ shock"

 \circ Dogs = wt in lbs x 10

Incremental boluses

- 5 or 7.5% saline
 - Effective, rapid
 - VERY short lived

- Rapid movement of water from interstitial space
- Na⁺ equilibrates rapidly
- Combo with colloid (HES, Dextran)

- \circ 4-7 mL/kg dog
- \circ 2-4 mL/kg cat
- Bolus over 5-10 mins
- \odot Follow with isotonic or colloidal fluids
 - Reduced volume

 \circ ¼ to ½ of typical shock volumes

- Primary indication
 - Head trauma
- Reduces cerebral edema
- Reduces ICP
- Improves CBF and CPP
- Maintains adequate MAP
- Small volume lends itself to improved management.

- Contraindications
 - Dehydration
 - Insufficient interstitial water to draw upon
 - o Hypernatremia
 - Severe, uncontrolled hemorrhage
 - Rapid increase in MAP can worsen hemorrhage
 - Pulmonary contusions
 - May worsen hemorrhage

- Large molecules
- Not freely diffusible
- Two types:
 - Natural Albumin
 - Synthetic HES, Dextran, Vetstarch (Voluven)

- Advantage
 - Remain in intravascular space
 - Maintain volume expansion for longer periods
- Questionable benefit in trauma patient
 - Human comparison study with crystalloids found NO benefit in case outcome
- o Cost

- Shock dose
 - $\odot\,$ 30-60% reduction of the crystalloid dose
 - \circ 10-20 mL/kg dogs
 - \circ 8-12 mL/kg cats
- $\circ~t_{1/2}$ varies among colloids
 - Size dependent
 - Distribution dependent

- Crystalloid + colloids
 - o Reduce dose on both
 - o 10 mL/kg HES + 30 mL/kg crystalloid
- o HES maintenance
 - o 0.5-1.0 mL/kg/h
- \circ Reduce crystalloid volume by ½ to ½
- Colloids and pulmonary contusions
 - Use with caution
 - Small dose, titrate to effect

- Coagulopathy
 - o vWf and fVIII impairment
 - Dilutional
 - o Doses > 20 mL/kg

 \circ More significant

- Hemorrhaging patient
 - Use with caution
- Concurrent use of FFP

Trade Name	Solution Strength	Wt. Average Molecular Weight (kDa)	Molecular Weight Category	Degree of Substitu- tion	C2:C6 Ratio	COP (mmHg)	Labeled for Veterinary Use?	Theoretical Ceiling Dose
Hespan (bbraunusa.com)	6% HES	450	High	0.7	4:1	32.7 (+/- 0.2)	No	20 mL/kg/day
Hextend (hospira.com)	6% HES	670	High	0.75	4:1	37.9 (+/- 0.1)	No	20 mL/kg/day
VetStarch (abbottanimal health.com)	6% HES	130	Medium	0.4	9:1	37.1 (+/- 0.8)	Yes	50 mL/kg/day
Voluven (hospira.com)	6% HES	130	Medium	0.4	9:1	37.1 (+/- 0.8)	No	50 mL/kg/day
Albumin 5%	NA	69	NA	NA	NA	23.2 (+/- 0.1)	Yes	NA

BLOOD PRODUCTS

- Trauma patients with significant blood loss may require blood transfusion
- No specific 'trigger'
- $\circ\,$ No specific PCV or coag time
- Patient 'needs' vary
- Whole blood, PRBC, Plasma or all components

BLOOD PRODUCTS

- \circ Fresh, whole blood
 - Platelet source
 - o 2000-5000 /unit
- \circ 20-25 mL/kg dogs
 - 10% blood volume increase
- Rule of Ones
 - $\circ~$ "1 mL per lb whole blood will raise the PCV 1%"
- Goal PCV 25-30% dog; 15-20% cats

BLOOD PRODUCTS

\circ Cats

- 10-15 mL/kg
- o ~10 % blood volume increase
- Administer over 3-6 hrs
- \circ Bolus in hypovolemic
- $\,\circ\,$ Source of hemorrhage must be controlled
 - Medical
 - Surgical

MONITORING DURING FLUID THERAPY

- \circ PE findings
- o BP
- o CVP
 - \circ 0-8 cmH₂O
 - o Trends
- Urine output
 - **1-2 mL/kg/h**

MONITORING DURING FLUID THERAPY

- Serial PCV/TP
 - Hemorrhage patients
 - Trauma patients with large volume resuscitation
 O Dilution
 - May require repeat transfusion
 - **RBC**
 - Plasma dilutional coagulopathy
- o Lactate
 - Initially high in hypovolemic patient
 - Should resolve as perfusion improves

TIPS FOR SUCCESSFUL OUTCOMES

VCA Specialty Animal Hospitals

THINGS NOT TO MISS

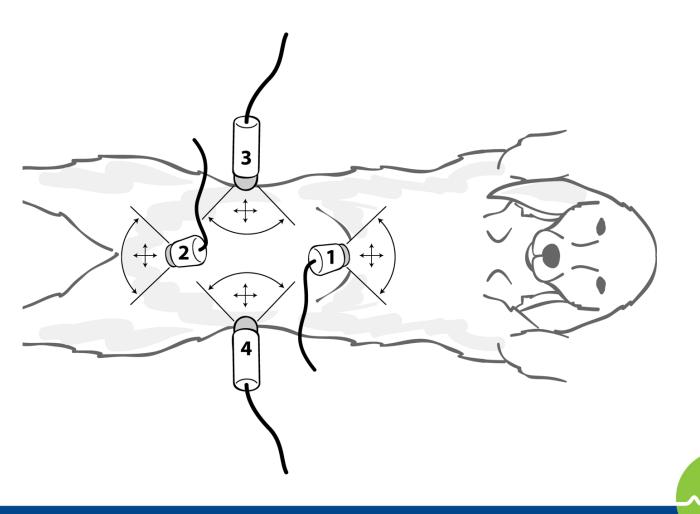
Total solids

- Major hemorrhage can be hard to assess
- Splenic contraction in dogs
 - RBC infusion
- TP < 6 g/dL + Persistent tachycardia despite fluids
 - Further evaluation
- Pre-existing disease?
 - PLN/PLE

THINGS NOT TO MISS

• Learn Focused Assessment with Sonography for Triage (FAST)

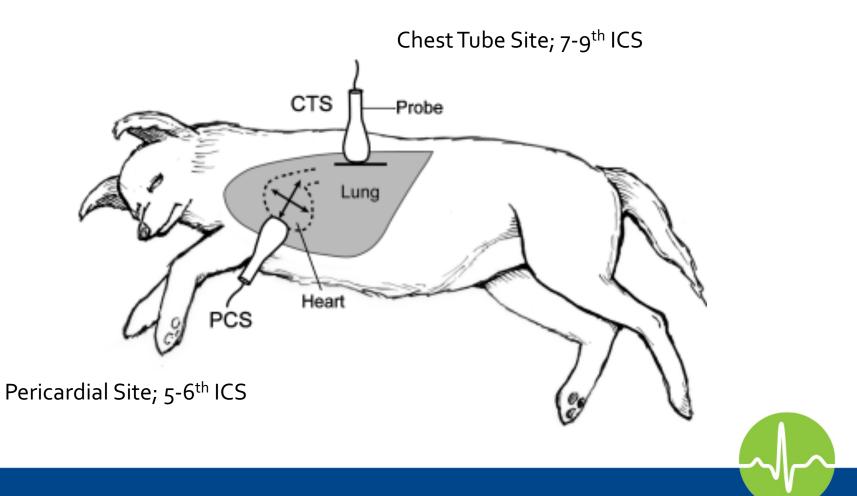
- Abdominal and thoracic exam
- Free fluid chest or abdomen
- Free Air? Pneumothorax
- Easily learned
 - 2 hr training with supervised experience
- o "Is there fluid/air or not ?"


https://fastvet.com/ http://academy.soundvet.com/

JAVMA, Vol 225, No. 8, October 15, 2004

FAST TECHNIQUE

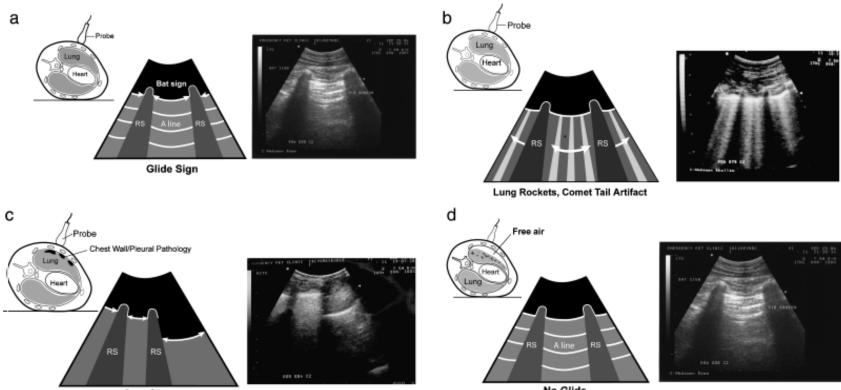
FAST TECHNIQUE


- Left lateral recumbency (ideally)
- Transverse and longitudinal planes
 - o subxiphoid region
 - the midline position over the bladder
 - \circ right and left flank fan through an angle of 45°
- Long and short axis positions
- Probe moved 1 inch in each of 4 directions (i.e. cranial, caudal, left, and right)

TFAST TECHNIQUE

Journal of Veterinary Emergency and Critical Care 18(3) 2008, pp 258–269

TFAST TECHNIQUE


- Bilateral chest tube site (CTS) views and pericardial site (PCS)
- CTS view US probe is held only horizontally
- in stationary fashion for evaluation of the glide sign
- PCS view short and long axis views to rule out pleural and pericardial fluid

Journal of Veterinary Emergency and Critical Care 18(3) 2008, pp 258–269

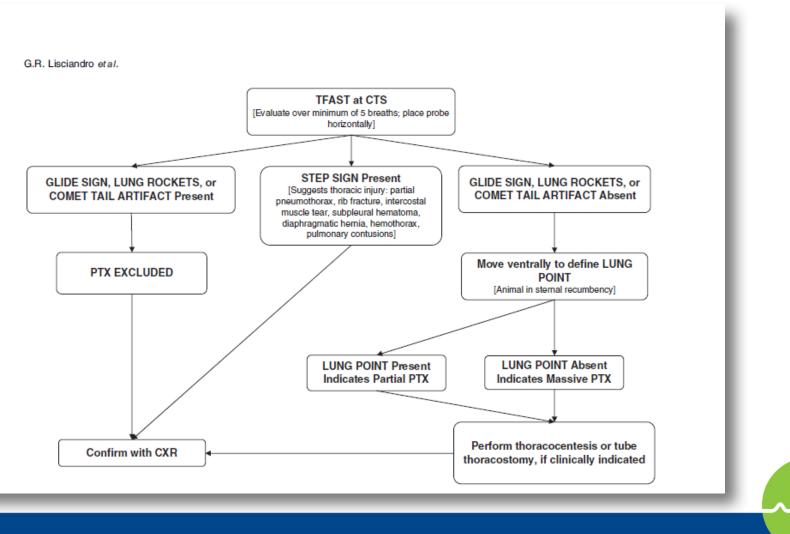
TFAST TECHNIQUE

Journal of Veterinary Emergency and Critical Care 18(3) 2008, pp 258–269

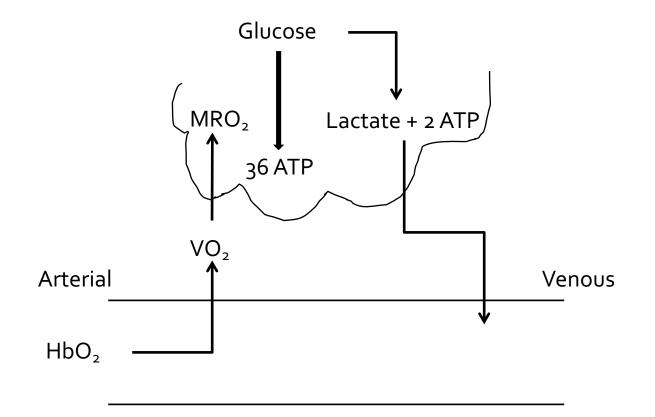
Step Sign

No Glide

VCA Specialty Animal Hospitals


TFAST INTERPRETATION

- Pneumothorax = NO 'glide sign,' defined as the lack of the normal dynamic interface between lung margins gliding along the thoracic wall during respiration.
- Thoracic trauma is diagnosed by the presence of pleural or pericardial fluid or the presence of a 'step sign,' defined as an abnormal glide sign


TFAST ALGORITHM

Journal of Veterinary Emergency and Critical Care 18(3) 2008, pp 258–269

LACTATE

 $VO_2 < MRO_2 = SHOCK$

LACTATE

- Lactate increases as a consequence of dysoxia
- $\,\circ\,$ Directly correlated to survival
- Other sources of lactate
 - Hepatic insufficiency
 - Severe sepsis
 - Intracellular alkalosis

Lactate elevations

 \odot Excess production

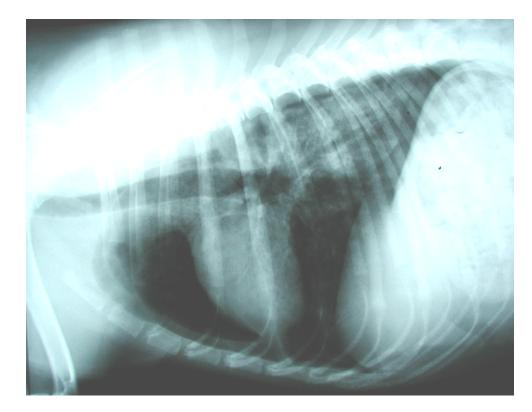
 \odot Decreased utilization

 \circ Combination

TISSUE HYPOXIA/HYPOPERFUSION

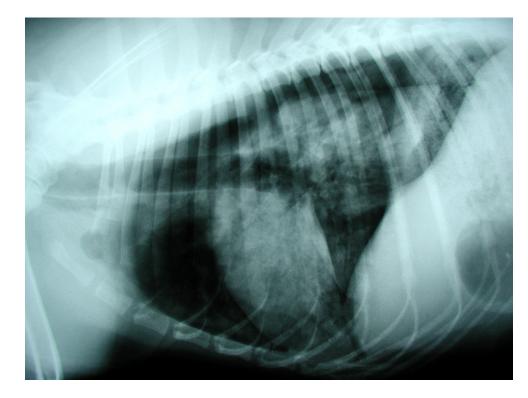
- Most common cause of hyperlactatemia
- o Lactate as a marker
 - \circ Good
 - o Some limits
 - Type B causes
 - Regional v global
 - Use concurrent perfusion data
 - Not a solo marker
 - Use other clinical data
- o Serial measurements

MONITORS


CHEST RADIOGRAPHS

- o In all trauma patients
- o Rule-out
 - o Diaphragmatic hernia
 - Pulmonary contusions
 - o Pneumothorax
- Significant contusions
 - Clinically evident
- Change in radiographic findings
 - Little importance

HBC – PULMONARY CONTUSIONS



24 HR POST INJURY

DO THE LEGS WORK?

- Spinal cord injury
 - Schiff-Sherrington posture
 - Deep Pain?
 - Yes fair to good PX
 - No poor to grave PX
- Long bone fractures?
 - $\circ~$ Adds to the expense of care

TRANSFUSION – EARLY AND OFTEN

- Normal PCV in most trauma patients BEFORE injury
- \circ 40% \longrightarrow 27% PCV in a otherwise healthy dog represents a 30% RBC loss
- Dilution effects
 - Hard to predict
- \circ Transfuse early
 - Avoid playing catch up
- Avoid microvascular hypoperfusion

TRANSFUSION – EARLY AND OFTEN

- Untreated hemorrhage
 - Poor perfusion
 - Neuroendocrine cascade
 - \circ With or without hypotension
 - Sequential organ failure
- Treatment goals
 - Early, goal directed resuscitation
 - Stay ahead of the curve

TRANSFUSION – EARLY AND OFTEN

o Dogs

- Non-type specific OK
- o Cats
 - TYPE specific a MUST
 - o Cross ideally
- o Consider need for plasma
 - Coagulopathic?
 - 1:1 in some cases
 - Not economically feasible in many cases

OLIGURIA IN TRAUMA PATIENTS

- Inadequate volume resuscitation
- Easy to under-estimate volume requirements
- Serial re-assessment
- Evaluate volume needs first before looking for other things

Ruptured bladder

- Imaging
- Abdominal fluid analysis
- Effusion chemistries
 - Higher potassium and creatinine than serum
- Painful
 - Chemical peritonitis
- Need contrast study to locate site
 - Cystourethrogram or cystogram
 - o IVP

- Diaphragmatic hernia
 - Radiographs usually sufficient
- Ultrasound
- Contrast studies
- Exploratory surgery

- Ruptured bladder
 - Repair once patient stable
 - May require abdominal catheter
 - o Drain abdomen
 - o Divert urine
 - Urinary catheter
- o Peritoneal dialysis
- Hyperkalemia
 - Needs to be corrected BEFORE anesthesia

- Diaphragmatic hernia
 - \circ Repair when stable
 - o "Timely fashion"
 - \odot Older literature recommended waiting 24hrs
 - \circ Flawed study
 - \odot No need to wait if patient is stable

DEGLOVING WOUNDS

- \circ Look bad
 - Most heal well
- Good wound management needed
- Judicious debridement once stable
 - Don't get carried away
 - Let tissue 'declare' itself as nonsalavageable
- Wet-to-dry bandage initially
- Non-adherent bandage once granulation bed has formed and wound is 'clean'.
- Avoid closing the wounds too soon
 - o Tension

YOU CAN'T KEEP A GOOD CAT DOWN

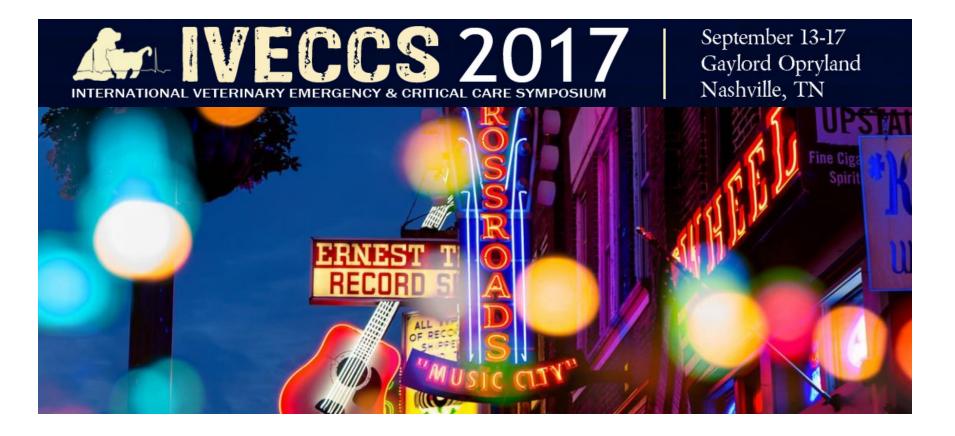
○ Fractures

○ Young cats are healing machines

Pelvic and distal limb fractures can heal when surgery isn't possible

PROTOCOL DRIVEN THERAPIES

- Trauma protocols
- \odot Improve compliance and outcome
 - Numerous human studies to support
- Establish a list of essentials
- Step-by-step, goal directed
- Helps less experience staff
- Minimize errors
- Good medicine, good practice stewardship



EXAMPLE – TRAUMA PROTOCOL

Alert senior staff of ETA and case type Arrival

- 1) Primary survey + BP
- 2) Place 2 large ga IVC. Begin crystalloid bolus
- 3) Collect samples for point of care testing
 - 1) PCV/TP/BG/Azo/lactate/Lytes
- 4) IF TP < 6g/dL FAST exam, source of hemorrhage
- 5) Resuscitated till HR < 140 bpm
- 6) Titrated analgesic pure mu opioids

